PoS - Proceedings of Science
Volume 395 - 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect
A maximum-likelihood-based technique for detecting extended gamma-ray sources with VERITAS
A. Chromey*  on behalf of the VERITAS Collaboration
Full text: pdf
Pre-published on: July 27, 2021
Published on: March 18, 2022
Abstract
Gamma-ray observations ranging from hundreds of MeV to tens of TeV are a valuable tool for studying particle acceleration and diffusion within our galaxy. Supernova remnants, pulsar wind nebulae, and star-forming regions are the main particle accelerators in our local Galaxy. Constructing a coherent physical picture of these astrophysical objects requires the ability to distinguish extended regions of gamma-ray emission, the ability to analyze small-scale spatial variation within these regions, and methods to synthesize data from multiple observatories across multiple wavebands. Imaging Atmospheric Cherenkov Telescopes (IACTs) provide fine angular resolution (<0.1 degree) for gamma-rays above 100 GeV. Typical data reduction methods rely on source-free regions in the field of view to estimate cosmic-ray background. This presents difficulties for sources with unknown extent or those which encompass a large portion of the IACT field of view (3.5 degrees for VERITAS). Maximum-likelihood-based techniques are well-suited for analysis of fields with multiple overlapping sources, diffuse background components, and combining data from multiple observatories. Such methods also offer an alternative approach to estimating the IACT cosmic-ray background and consequently an enhanced sensitivity to largely extended sources. In this proceeding, we report on the current status and performance of a maximum likelihood technique for the IACT VERITAS. In particular, we focus on how our method’s framework employs a dimension for gamma-hadron separation parameters in order to improve sensitivity on extended sources.
DOI: https://doi.org/10.22323/1.395.0768
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.