PoS - Proceedings of Science
Volume 395 - 37th International Cosmic Ray Conference (ICRC2021) - GAI - Gamma Ray Indirect
The CoMET multiperspective event tracker for wide field-of-view gamma-ray astronomy
Y. Becherini, T. Bylund, J.P. Ernenwein, G. Kukec Mezek*, M. Punch, P. Romano, A. Saleh, M. Senniappan, S. Thoudam, M. Tluczykont, S. Vercellone  on behalf of the COMET collaboration
Full text: pdf
Pre-published on: July 05, 2021
Published on: March 18, 2022
Abstract
The CoMET R&D project focuses on the development of a new technique for the observation of very high-energy (VHE) $\gamma$-rays from the ground at energies above ~200 GeV, thus covering emission from soft-spectrum sources. The CoMET array under study combines 1242 particle detector units, distributed over a circular area of ~160 m in diameter and placed at a very high altitude (5.1 km), with atmospheric Cherenkov light detectors.

The atmospheric Cherenkov light detectors, inspired by the "HiSCORE" design and improved for the energy range of interest, can be operated together with the particle detectors during clear nights. As such, the instrument becomes a Cosmic Multiperspective Event Tracker (CoMET). CoMET is expected to improve the reconstruction of arrival direction, energy and shower maximum determination for $\gamma$-ray-induced showers during darkness, which is crucial for the reduction of background contamination from cosmic rays. Prototypes of both particle and atmospheric Cherenkov light detectors are already installed at Linnaeus University in Sweden, while in parallel we simulate the full detector response and estimate the reconstruction improvement for $\gamma$-ray events.

In this contribution, we present Monte-Carlo simulations of the detector array, consisting of CORSIKA shower simulations and custom detector response simulations, together with the coupling of particle and atmospheric Cherenkov light information, the reconstruction strategy of the complete array and the detection performance on point-like VHE $\gamma$-ray sources.
DOI: https://doi.org/10.22323/1.395.0905
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.