Deep Learning Based Event Reconstruction for the IceCube-Gen2 Radio Detector
N. Heyer,
C. Glaser*,
T. Glusenkamp on behalf of the IceCube-Gen2 collaboration,
R. Abbasi,
M. Ackermann,
J. Adams, S.K. Agarwalla, J. Aguilar, M. Ahlers, J.M. Alameddine, N.M.B. Amin, K. Andeen, G. Anton, C. Argüelles, Y. Ashida, S. Athanasiadou, J. Audehm, S. Axani, X. Bai, A. Balagopal V, M. Baricevic, S. Barwick, V. Basu, R. Bay, J. Becker Tjus, J. Beise, C. Bellenghi, C. Benning, S. BenZvi, D. Berley, E. Bernardini, D. Besson, A. Bishop, E. Blaufuss, S. Blot, M. Bohmer, F. Bontempo, J. Book, J. Borowka, C. Boscolo Meneguolo, S. Boser, O. Botner, J. Bottcher, S. Bouma, E. Bourbeau, J. Braun, B. Brinson, J. Brostean-Kaiser, R.T. Burley, R. Busse, D. Butterfield, M. Campana, K. Carloni, E. Carnie-Bronca, M. Cataldo, S. Chattopadhyay, T.N. Chau, C. Chen, Z. Chen, D. Chirkin, S. Choi, B. Clark, R. Clark, L. Classen, A. Coleman, G. Collin, J. Conrad, D. Cowen, B. Dasgupta, P. Dave, C. Deaconu, C. De Clercq, S. De Kockere, J. DeLaunay, D. Delgado Lopez, S. Deng, K. Deoskar, A. Desai, P. Desiati, K. de Vries, G. de Wasseige, T. DeYoung, A. Diaz, J.C. Diaz-Velez, M. Dittmer, A. Domi, H. Dujmovic, M. DuVernois, T. Ehrhardt, P. Eller, E. Ellinger, S. El Mentawi, D. Elsässer, R. Engel, H. Erpenbeck, J. Evans, J. Evans, P. Evenson, K.L. Fan, K. Fang, K.R. Farrag, A. Fazely, A. Fedynitch, N. Feigl, S. Fiedlschuster, C. Finley, L. Fischer, B. Flaggs, D.B. Fox, A. Franckowiak, A. Fritz, T. Fujii, P. Furst, J. Gallagher, E. Ganster, A. Garcia, L. Gerhardt, R. Gernhaeuser, A. Ghadimi, P. Giri, T. Glauch, N. Goehlke, S. Goswami, D. Grant, S. Gray, O. Gries, S. Griffin, S. Griswold, D.J. Guevel, C. Günther, P. Gutjahr, C. Haack, T. Haji Azim, A. Hallgren, R. Halliday, S. Hallmann, L. Halve, F. Halzen, H. Hamdaoui, M. Ha Minh, K. Hanson, J. Hardin, A. Harnisch, P. Hatch, J. Haugen, A. Haungs, D. Heinen, K. Helbing, J. Hellrung, B. Hendricks, F. Henningsen, J. Henrichs, L.P. Heuermann, S. Hickford, A. Hidvegi, J. Hignight, C. Hill, G. Hill, K. Hoffman, B. Hoffmann, K. Holzapfel, S. Hori, K. Hoshina, W. Hou, T. Huber, T. Huege, K. Hughes, K. Hultqvist, M. Hunnefeld, R. Hussain, K. Hymon, S. In, A. Ishihara, M. Jacquart, O. Janik, M. Jansson, G. Japaridze, M. Jeong, M. Jin, B. Jones, O. Kalekin, D. Kang, W. Kang, X. Kang, A. Kappes, D. Kappesser, L. Kardum, T. Karg, M. Karl, A. Karle, T. Katori, U. Katz, M. Kauer, J. Kelley, A. Khatee Zathul, A. Kheirandish, J. Kiryluk, S. Klein, T. Kobayashi, A. Kochocki, H. Kolanoski, T. Kontrimas, L. Kopke, C. Kopper, J. Koskinen, P. Koundal, M. Kovacevich, M. Kowalski, T. Kozynets, C. Krauss, I. Kravchenko, K. Jayakumar, E. Krupczak, A. Kumar, E. Kun, N.K. Neilson, N.N. Lad, C. Lagunas Gualda, M.J. Larson, S. Latseva, F.H. Lauber, J. Lazar, J. Lee, K. Leonard DeHolton, A. Leszczynska, M. Lincetto, Q. Liu, M. Liubarska, M. Lohan, E. Lohfink, J. LoSecco, C. Love, C.J. Lozano Mariscal, L. Lu, F. Lucarelli, Y. Lyu, J. Madsen, K. Mahn, Y. Makino, S. Mancina, S. Mandalia, W. Marie Sainte, I.C. Maris, S. Marka, Z. Marka, M. Marsee, I. Martinez-Soler, R.H. Maruyama, F. Mayhew, T. McElroy, F. McNally, J.V. Mead, K. Meagher, S. Mechbal, A. Medina, M. Meier, Y. Merckx, L. Merten, Z. Meyers, J. Micallef, M. Mikhailova, J. Mitchell, T. Montaruli, R. Moore, Y. Morii, B. Morse, M. Moulai, T. Mukherjee, R. Naab, R. Nagai, M. Nakos, A. Narayan, U. Naumann, J. Necker, A. Negi, A. Nelles, M. Neumann, H. Niederhausen, M. Nisa, A. Noell, A. Novikov, S. Nowicki, A. Nozdrina, E. Oberla, A. Pollmann, V. O'Dell, M. Oehler, B. Oeyen, A. Olivas, R. Orsoe, J. Osborn, E. O'Sullivan, L. Papp, N. Park, G. Parker, E.N. Paudel, L. Paul, C. Pérez de los Heros, T. Petersen, J. Peterson, S. Philippen, S. Pieper, J. Pinfold, A. Pizzuto, I. Plaisier, M. Plum, A. Ponten, Y. Popovych, M. Prado Rodriguez, B. Pries, R. Procter-Murphy, G. Przybylski, L. Pyras, J. Rack-Helleis, M. Rameez, K. Rawlins, Z. Rechav, A. Rehman, P. Reichherzer, G. Renzi, E. Resconi, S. Reusch, W. Rhode, B. Riedel, M. Riegel, A. Rifaie, E. Roberts, S. Robertson, S.T. Rodan, G. Roellinghoff, M. Rongen, C. Rott, T. Ruhe, D. Ryckbosch, I. Safa, J. Saffer, D. Salazar-Gallegos, P. Sampathkumar, S. Sanchez Herrera, A. Sandrock, P. Sandstrom, M. Santander, S. Sarkar, S. Sarkar, J. Savelberg, P. Savina, M. Schaufel, H. Schieler, S. Schindler, L. Schlickmann, B. Schlüter, F. Schlüter, N. Schmeisser, T. Schmidt, J. Schneider, F. Schröder, L.J. Schumacher, G. Schwefer, S. Sclafani, D. Seckel, M.F.H. Seikh, S. Seunarine, M. Shaevitz, R. Shah, A. Sharma, S. Shefali, N. Shimizu, M. Silva, B. Skrzypek, D. Smith, B. Smithers, R. Snihur, J. Soedingrekso, A. Sogaard, D. Soldin, P. Soldin, G. Sommani, D. Southall, C. Spannfellner, G. Spiczak, C. Spiering, M. Stamatikos, T. Stanev, T. Stezelberger, J. Stoffels, T. Sturwald, T. Stuttard, G. Sullivan, I. Taboada, A. Taketa, H. Tanaka, S. Ter-Antonyan, M. Thiesmeyer, W. Thompson, J. Thwaites, S. Tilav, K. Tollefson, C. Tönnis, J. Torres, S. Toscano, D. Tosi, A. Trettin, Y. Tsunesada, C.F. Tung, R. Turcotte, J.P. Twagirayezu, B. Ty, M. Unland Elorrieta, A.K. Upadhyay, K. Upshaw, N. Valtonen-Mattila, J. Vandenbroucke, N. van Eijndhoven, D. Vannerom, J. van Santen, J. Vara, D. Veberic, J. Veitch-Michaelis, M. Venugopal, S. Verpoest, A.G. Vieregg, A. Vijai, C. Walck, C. Weaver, P. Weigel, A. Weindl, J. Weldert, C. Welling, C. Wendt, J. Werthebach, M. Weyrauch, N. Whitehorn, C. Wiebusch, N. Willey, D. Williams, S. Wissel, L. Witthaus, A. Wolf, M. Wolf, G. Worner, G. Wrede, S. Wren, X. Xu, J.P. Yanez, E.B. Yildizci, S. Yoshida, R. Young, F.J. Yu, S. Yu, T. Yuan, Z. Zhang, P. Zhelnin, S. Zierke and M. Zimmermanet al. (click to show)*: corresponding author
Pre-published on:
July 25, 2023
Published on:
September 27, 2024
Abstract
The planned in-ice radio array of IceCube-Gen2 at the South Pole will provide unprecedented sensitivity to ultra-high-energy (UHE) neutrinos in the EeV range. The ability of the detector to measure the neutrino’s energy and direction is of crucial importance. This contribution presents an end-to-end reconstruction of both of these quantities for both detector components of the hybrid radio array ('shallow' and 'deep') using deep neural networks (DNNs). We are able to predict the neutrino's direction and energy precisely for all event topologies, including the electron neutrino charged-current (νe-CC) interactions, which are more complex due to the LPM effect. This highlights the advantages of DNNs for modeling the complex correlations in radio detector data, thereby enabling a measurement of the neutrino energy and direction. We discuss how we can use normalizing flows to predict the PDF for each individual event which allows modeling the complex non-Gaussian uncertainty contours of the reconstructed neutrino direction. Finally, we discuss how this work can be used to further optimize the detector layout to improve its reconstruction performance.
DOI: https://doi.org/10.22323/1.444.1102
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.