PoS - Proceedings of Science
Volume 444 - 38th International Cosmic Ray Conference (ICRC2023) - Neutrino Astronomy & Physics (NU)
Anomaly Detection in Early Data From the Radio Neutrino Observatory Greenland
Z.S. Meyers, A. Nelles*,  RNO-G Collaboration, J.A.A. Aguilar, P. Allison, D.Z. Besson, A. Bishop, O. Botner, S. Bouma, S. Buitink, W. Castiglioni, M. Cataldo, B.A. Clark, A. Coleman, K. Couberly, P. Dasgupta, S. De Kockere, K.D. de Vries, C. Deaconu, M.A. DuVernois, A. Eimer, C. Glaser, T. Glüsenkamp, A. Hallgren, S. Hallmann, J.C. Hanson, B. Hendricks, J. Henrichs, N. Heyer, C. Hornhuber, K. Hughes, T. Karg, A. Karle, J.L. Kelley, M. Korntheuer, M. Kowalski, I. Kravchenko, R. Krebs, R. Lahmann, P. Lehmann, U.A. Latif, P. Laub, H. Liu, J. Mammo, M.J. Marsee, M. Mikhailova, K. Michaels, K. Mulrey, M.S. Muzio, A. Novikov, A. Nozdrina, E. Oberla, B. Oeyen, I. Plaisier, N. Punsuebsay, L. Pyras, D. Ryckbosch, F. Schlüter, O. Scholten, D. Seckel, M.F.H. Seikh, D.J.B. Smith, J. Stoffels, D. Southall, K. Terveer, S. Toscano, D. Tosi, D.J. Van Den Broeck, N. van Eijndhoven, A.G. Vieregg, J.Z. Vischer, C. Welling, D.R. Williams, S.A. Wissel, R. Young and A. Zinket al. (click to show)
Full text: pdf
Pre-published on: August 18, 2023
Published on: September 27, 2024
Abstract
After two seasons of installation, 7 stations built and many lessons learned, the Radio Neutrino Observatory Greenland (RNO-G) is now operational. In the coming years, the construction of another 28+ stations will bring the array to full capacity as an instrument with an eye towards the ultra-high energy neutrino (>10 PeV) regime, creating another link in the fast paced and rapidly changing landscape of multi-messenger astronomy. Until now, the data volume of our two initial seasons has remained manageable. However, as the array continues to grow, we need to develop faster and more efficient processes regarding how to filter our data; we must throw away the noise and identify the most promising events. Data reduction tools become crucial for anthropogenic, environmental and local noise identification/removal in order to test and monitor our instrument as we scale up. We present a convolutional encoder-decoder network that assigns an anomaly ranking to events, helping to classify different categories of background and signal.
DOI: https://doi.org/10.22323/1.444.1142
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.