Volume 482 - Frontier Research in Astrophysics – IV (FRAPWS2024) - High Energy Astrophysics
Towards a new generation of reflection models for precision measurements of accreting black holes
C. Bambi
Full text: pdf
Published on: October 07, 2025
Abstract
Blurred reflection features are commonly observed in the X-ray spectra of accreting black holes. In the presence of high-quality data and with the correct astrophysical model, X-ray reflection spectroscopy is a powerful tool to probe the strong gravity region of black holes, study the morphology of the accreting matter, measure black hole spins, and test Einstein's theory of General Relativity in the strong field regime. In the past 10-15 years, there has been significant progress in the development of the analysis of these reflection features, thanks to both more sophisticated theoretical models and new observational data. However, the next generation of X-ray missions (e.g. eXTP, Athena, HEX-P) promises to provide unprecedented high-quality data, which will necessarily require more accurate synthetic reflection spectra than those available today. In this talk, I will review the state-of-the-art in reflection modeling and I will present current efforts to develop a new generation of reflection models with machine learning techniques.
DOI: https://doi.org/10.22323/1.482.0024
How to cite

Metadata are provided both in article format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in proceeding format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.