F. Terranova*, F. Acerbi, G. Ballerini, M. Bonesini, A. Branca, C. Brizzolari,
G. Brunetti, M. Calviani, S. Capelli, S. Carturan, M.G. Catanesi, S. Cecchini, N. Charitonidis, F. Cindolo, G. Collazuol, E. Conti, F. Dal Corso, C. Delogu, G. De Rosa, A. Falcone, B. Goddard, A. Gola, C. Jollet, V. Kein, B. Klicek, Y.G. Kudenko, M. Laveder, A. Longhin, L. Ludovici, E. Lutsenko, L. Magaletti, G. Mandrioli, A. Margotti, V. Mascagna, N. Mauri, L. Meazza, A. Meregaglia, M. Mezzetto, M. Nessi, A. Paoloni, M. Pari, E. Parozzi, L. Pasqualini, G. Paternoster, L. Patrizii, M. Pozzato, M. Prest, F. Pupilli, E. Radicioni, C. Riccio, A.C. Ruggeri, C. Scian, G. Sirri, M. Stipcevic, F. Terranova, M. Tenti, M. Torti, E. Vallazza, F. Velotti, M. Vesco and L. Votanoet al. (click to show)
Pre-published on:
January 29, 2021
Published on:
April 15, 2021
Abstract
The CERN NP06/ENUBET experiment is designing the first ``monitored neutrino beam'', i.e. a neutrino beam with unprecedented control of the flux, energy, and flavor of the neutrinos at the source. The original aim of ENUBET was to monitor the $\nu_e$ production mostly by the detection of large-angle positrons from three-body semileptonic decays of kaons: $K^+ \rightarrow e^+ \pi^0 \nu_e$.
Over the years, the ENUBET technique has been extended to cover also the monitoring of the $\nu_\mu$ from kaon and pion decays. In this paper, we present these new developments and the overall status of the project.