PoS - Proceedings of Science
Volume 426 - High Energy Astrophysics in Southern Africa 2022 (HEASA2022) - Extreme Universe
Shaken, not stirred: Test particles in binary black hole mergers
P. van der Merwe* and M. Boettcher
Full text: pdf
Pre-published on: November 10, 2023
Published on: December 27, 2023
Abstract
Since 2015 the advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected a large number of gravitational wave events, originating from both binary neutron stars and binary black hole (BBH) mergers. In light of these detections, we simulate the dynamics of ambient test particles in the gravitational potential well of a BBH system close to its inspiral phase with the goal of simulating the associated electromagnetic radiation and resulting spectral energy
distribution of such a BBH system. This could shed light on possible detection ranges of electromagnetic counterparts to BBH mergers. The potentials are numerically calculated using finite difference methods, under the assumption of non-rotating black holes with the post-Newtonia
Paczynski-Wiita potential approximation in tandem with retarded time concepts analogous to electrodynamics. We find that the frequencies of potential electromagnetic radiation produced by these systems (possibly reaching earth), range between a few kHz to a few 100MHz.
DOI: https://doi.org/10.22323/1.426.0044
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.