Flow-based sampling for lattice field theories
Pre-published on:
October 11, 2024
Published on:
November 06, 2024
Abstract
Critical slowing down and topological freezing severely hinder Monte Carlo sampling of lattice field theories as the continuum limit is approached. Recently, significant progress has been made in applying a class of generative machine learning models, known as "flow-based" samplers, to combat these issues. These generative samplers also enable promising practical improvements in Monte Carlo sampling, such as fully parallelized configuration generation. These proceedings review the progress towards this goal and future prospects of the method.
DOI: https://doi.org/10.22323/1.453.0114
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.